
“Modeling large-scale networks using virtual machines and physical appliances”

by Joseph Mayes, Software Engineering Institute, Carnegie Mellon University

When I began teaching technology courses in the 1990s, the size of your lab and the amount of
equipment available to students indicated, if not directly measured, program excellence. Having
labs filled with hardware was impressive, and the right amount of hardware was always “more.”
Classes were full, and students were coming to us in droves.

And then the IT bubble burst. Interest in training peaked and then crashed. There wasn’t enough
money to refresh the hardware labs, and some of the labs didn’t deserve to be refreshed. With
fewer students, schools could get by on less equipment.

Also, as technology was maturing, remote teaching was coming of age: students were asking the
schools to come to them over the Internet. Citrix, the RDP, and related products allowed labs to
be controlled remotely, and VMware had released its first x86 server virtualization product. The
meaning of “hands-on training” was changing to include virtual hands-on experiences.

Adapting to Support Remote Training

A team at Carnegie Mellon University’s Software Engineering Institute (SEI) was creating IT
security courses for elements of the U.S. Army and Marine Corps through SEI’s affiliation with
the U.S. government as a Federally-Funded Research and Development Center (FFRDC) [1].
The courses included PowerPoint lectures, instructor-led demonstrations, and hands-on
interactive labs where students operated PCs, servers, routers, firewalls, and other IT systems in
an isolated, closed network. The labs generally presented a network in a given start state, with
instructions for manipulating the network to reinforce the training objective. As such, the labs
were running live operating systems (OSes) and generating real traffic (as opposed to
simulations).

The Department of Defense (DoD) contract with the SEI required that students be able to access
the training online, on demand, any time, and from any place with an Internet connection. This
included delivery of the lecture content and slides, and also a way for students to execute a
course’s interactive lab assignments over the Internet.

This presented a number of challenges. The courses, including labs, had to be available around
the clock every day. The training delivery connection had to use only standard ports allowed
through DoD firewalls (generally restricted to HTTP and HTTPS). The lab solution had to be
highly scalable to support a percentage of the more than 50,000 users who were signed up for the
online training. The lab solution had to deliver the same labs done in a face-to-face class;
because they were designed to be interactive, the labs couldn’t be just videos. The courses had
to be accessible from DoD computers, which were managed systems whose end users couldn’t
install supplemental software. Because of the restriction above, and also because of restricted
bandwidth at some DoD locations, the labs had to operate remotely as opposed to being
downloaded and run locally. The lab solution couldn’t be based on ActiveX because the military

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
27 JAN 2014

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Modeling large-scale networks using virtual machines and physical
appliances

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Joe Mayes

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute Carnegie Mellon University Pittsburgh,
PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

18

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

disallowed ActiveX support on its systems, which made running an RDP client over ActiveX not
possible.

The challenges the SEI encountered in delivering the instruction were markedly different than
those it faced in delivering the remote labs.
Instruction delivery had to occur through browser-based web content. The eventual product was
a Flash-enabled video screen with a parallel slide presentation in sync with the speaker, as well
as a synchronized scrolling text display with accompanying downloadable Portable Document
Files (PDFs).
The lab delivery would use a web-enabled portal system that would serve as a proxy to the
closed network and system access required to run the lab assignments. Using the portal would
allow the RDP, Telnet, SSH, and other protocols to be used in the lab environment without
having to cross the DoD firewalls.

The final hurdle was the development of the delivery platform for the lab systems behind the
portal. Building dynamically scalable labs would be prohibitively expensive if physical
machines were used for all lab components. Also, after a student completed a lab, or if the
student crashed the lab in mid-execution, there needed to be a way to bring the lab environment
back to a pristine state for its next use. Because each course contained multiple labs, scalability
demanded the ability to support multiple lab setups on the same physical equipment to keep the
physical footprint to a reasonable size, and selection of the resources and the plumbing of those
resources had to be scriptable and automated for each lab.

Developing a Custom Virtualization Solution

Server virtualization offered a number of attractive properties for class labs, both for students in
classrooms and online. A single hardware instance could run multiple virtual machines (VMs).
‘Snapshots’ (the process of capturing the VM at a certain state), allowed the lab to be started
with VMs that had a repeatable initial configuration and then launched on demand in any
running or non-running state.

Those same snapshots enabled the capture of the lab VMs at multiple points in time in the lab
process. Long labs could be broken into smaller components, and it would no longer be
necessary to complete long, multistep labs in a single marathon session or repeat an entire lab if
the student incorrectly executed a single step. And after a student completed a lab, the virtual
machine(s) could be brought down and reverted back to the initial settings to restart the lab again
for the next instance.

While the above virtualization solutions were obvious ways to leverage hypervisor technologies
for lab support, resolving the scalability issues took some customization of the hypervisor
solution. For instance, while virtualization has obvious advantages for reducing physical
hardware needs, it doesn’t really address the storage requirements for tens or hundreds (or
thousands!) of virtual machines. The solution to that issue was manipulation of the hypervisor
snapshot process.

A normal hypervisor VM begins as a base disk of the installed guest OS, with snapshots
capturing the differences between the base disk and the VM at its current state, then repeating
that process for the next guest OS, and so on. Using this VMware storage model eventually
depletes the available space in the VMware File System (VMFS) volume, and because volume
size is capped at 2 terabytes, it isn’t long before the entire storage capacity is consumed.

There are some generally supported methods for overcoming this issue, but they didn’t give the
degree of flexibility the SEI team desired. Instead, the team modified the snapshot process by
creating a single base disk (of, say, Windows 2008r2 Server). From this base disk, they could
then install the system as a domain controller and snap the disk again. The SEI team used a
single base disk and created a snapshot of a domain controller, then reused the same base disk to
create an Exchange server, then reused the disk again to create a web server, and so on (Figure
1).

The key to this system, then, was to launch multiple Windows servers by threading the different
snapshot images all back to the same disk, which meant that a file server, domain controller,
Exchange server, SQL server, and other servers could each be run from one base disk plus the
snapshot file for that server.

The same process is also used to clone multiple Windows XP client machines in a network
environment. By scripting the launch of XP clients, which is a documented XP capability, it’s
possible to produce multiple independent XP clients in an environment and join them to a
domain, all from a single XP base disk, without ever having to manually install the individual
workstations. The process also works for multiple domain controllers or any other system with
an automated installation process.

The net result of this work is the ability to store a few base disks and installation automation
scripts and create a startup sequence that can spin up an entire exercise environment in just a
couple of minutes.

It also resolved the hardware reusability challenge. One could now store all the scripts necessary
for multiple labs, select which scripts to invoke, start any lab at will, and then tear it down and
have a totally different lab up and running within minutes.

Figure 1: Manipulating snapshots for creating VMs

Ultimately, the SEI developed this capability into a training delivery platform called Virtual
Training Environment (VTE), which is still used today by the U.S. government as FedVTE [2]
and by the SEI as the CERT® Simulation, Training and Exercise Platform--forward (STEPfwd)
[3].

Testing the Bounds of Scalability

But could this concept be expanded even further? How could big could one of these virtual
environments get?

The question of expansion arose from requests for network environments where real-world
scenarios could be played out safely—isolated environments that could hold tens or hundreds of
systems and associated networking resources and that could mirror a real-world environment of a
business, a government agency, or a military network. This meant taking the lessons learned
from VTE lab virtualization and giving that technology a life of its own. The SEI took this idea
and developed an exercise network. Previously, virtual machine labs had all been created on a
single server, but moving to larger and larger environments required linking multiple hypervisor
servers together into one massive virtual environment.

This method introduced new obstacles when it came to multi-server environments and disk
storage limitations.

Passing hypervisor Virtual Local Area Network (VLAN) information between physical servers
was easily resolved by employing 802.1q VLANs between servers, but the VLAN trunks needed
to have enough bandwidth to not be choke points for what was being represented to exercise
participants as adjacent physical machines on the same network segment.

The problem of creating hundreds of separate VMs had been solved through the use of base disks
plus snapshot images, but now a method was needed to instantiate this across multiple server
platforms. At this point, another issue arose: The VMFS file system allowed only 8 simultaneous
accesses to the base disk (file), limiting the ability to share the same base disk with multiple
servers. One solution to the VMFS issue was merely to create multiple base disks, but limiting
the number of base disks while also maintaining multiple mappings for different exercises
became a monumental management problem, and keeping changes synchronized would create
additional complexities.

The second method was to let a hardware solution reduce the required storage by deduplicating
data. The SEI tested and successfully used NetApp storage systems for this purpose. NetApp
data deduplication was highly effective for creating multiple instances of a single base disk
without increasing the overall storage requirements because each subsequent base disk was a
clone of the first one. And the NetApp volume cloning option made it simple to replicate
exercise environments when the SEI began supporting large symposia or competitions, which
required multiple instances of the same exercise environment. Since the entire exercise could be
built on a volume using the base-disk model to save space, the NetApp volume cloning option
was used to create large numbers of environments by simply cloning the exercise volume as

many times as necessary to serve as many as 150 or more simultaneous participants for some
applications.

The system expansion also drove a file system review. With VMware as the chosen hypervisor
product, the available file system choices were directly attached VMFS or external Network File
System (NFS) mounts. While the SEI was developing its exercise network, 1Gbps Ethernet
connectivity was the highest transport speed deployed, so a VMFS over Fibre Channel (at 4
Gbps) provided higher speed connections for loading the shared base disks concurrently to
multiple hypervisors. However, VMFS’ limitations of a maximum for volume size and
concurrent accesses to the common base disk limited the scalability of this option. Over time, the
availability of affordable 10Gbps connections and faster NFS server front ends permitted the SEI
to switch to NFS, which is the file system they currently use and which eliminates both the
storage size limitation and the concurrent disk access restriction.

Using a hypervisor infrastructure for launching, managing, and decommissioning temporary
environments with large numbers of guest machines doesn’t fit the normal profile of hypervisor
management systems, so the SEI built its own management system. Key features of that system
included the ability to launch and retire large numbers of systems concurrently. Scripting also
allowed the SEI hypervisor front end to create VM guest systems from scripted startups as
opposed to requiring pre-existing VM guest images (used for spawning hundreds of user
workstations in an environment, for example), create multiple user accounts and assign them to
individual systems and domains, and create many LAN environments while concurrently
assigning guest system NICs to those environments.

This article does not specifically discuss the management system and client access systems. But
together they generate a web-based user environment portal that gives users access to a console
image of one or more virtual systems, chat sessions between members of a team managing
systems, the ability to stop and restart systems, and the ability to tile their screen to manage
multiple systems concurrently. The management system also allows overseers, such as
instructors and exercise white cell personnel, to view a console image of any system or systems
across the entire environment, either in real time or through video capture. This allowed
overseers performing post-event analysis of the environment and participants to watch what
happened on targeted guest systems in the environment [4].

Increasing Realism by re-introducing Physical Devices

By 2011, the SEI had been using its simulation platform for three years in support of classroom
instruction, skills evaluation, single- and multi-site cyber exercises and research projects. The
verisimilitude between the virtual environment and operational networks had always had some
limitations, but they were mainly related to emulations of physical network appliances such as
routers and firewalls (where generic Linux systems had been configured to emulate the
functions).

The requirement to increase the realism of the exercise environment came to a head with a
project for the newly formed U.S. Cyber Command (USCYBERCOM). The military has a

requirement to “Train As We Fight,” a requirement that applied to the cyber exercises the SEI
was to create for them.

In the summer of 2011, USCYBERCOM entered into an agreement with the SEI for the
construction of a large-scale exercise environment for a military exercise dubbed Cyber Flag.
The exercise, the first of its kind for USCYBERCOM, would involve approximately 300 military
cybersecurity experts in force-on force actions in an isolated environment where all four U.S.
military services could practice their cyber defense skills [5].

Deploying 8000-plus VMs for the DoD

Pure size was one issue. Creating an accurate, real-world environment without interfacing with
the real world would first require a robust network of VMs. The SEI initially envisioned that the
network would have 5,000 VMs, a number that would eventually grow to 150+ servers
supporting more than 8,000 VMs and associated servers. This meant customizing all aspects of
the exercise environment, from OS versions to Windows Active Directory to email structures.

The second requirement was to build the network environment to simulate the actual world as
closely as possible, to facilitate cybersecurity activities at the network level as well as at the
client and server OS levels. This entailed the inclusion of physical network appliances to the
exercise network and STEPfwd virtualization environments—in the game, as opposed to the
appliances just being part of the invisible support infrastructure. The addition of physical devices
would enhance realism by including physical system vulnerabilities such as hardware resets,
supporting requirements for data throughput that weren’t possible with the available virtual
machines, and placing inline appliances (intrusion detection systems and intrusion prevention
systems, or IDS/IPS, for example) in the exercise data streams to meet USCYBERCOM’s design
requirements for the environment.

Specifically, USCYBERCOM required that the virtual environment include commercial network
appliances from at least five different vendors. While some vendors could provide virtual
machine versions of their products, others could only provide physical appliances, so the SEI
team began developing solutions for integrating physical devices into the virtual network.

The initial architecture was obvious: 802.1q VLANs and trunks had been used to extend
connectivity between physical servers, so they could also be used to extend connectivity to
physical network appliances. However, the SEI soon encountered a number of complicating
factors.

Virtual devices offer, without adding cost, as many interfaces as the environment requires, but
that is not the case for physical environments. Budgets were an issue, so the SEI sometimes had
to tradeoff between 100 percent hardware fidelity (the same device model and ports as an
enterprise-level production appliance) and a similar device running the same operating system at
a lower performance level.

Using VLANs to support connections to physical devices required a large number of VLANs.
The largest USCYBERCOM implementation used more than 2,500 VLANs, requiring backbone

infrastructure hardware that supported extended VLAN ranges beyond the first 1,024 VLAN
IDs. The large number of VLANs in use also impacted the topology of the exercise. Relatively
moderate edge switches could support the appliance requirements, but had limitations on the
maximum number of VLANs that could be supported. To ensure the switches did not exceed
their 250-VLAN maximum, VLANs were filtered at the trunk boundary so the core switches
never presented more than the required VLANs to the edge switches (Figure 2). This was a
practical solution that limited the number of VLANs the edge switches had to support, while also
providing exercise infrastructure security by denying an aggressor an attack vector via a
compromised appliance on one edge switch, which could be used to leverage VLAN hopping to
attack systems in another part of the network.

VLANs were filtered between the core switch and edge switches to permit only the required
VLANs to propagate to the edge switches.

Networking challenges in appliance integration

Making connections between virtual machines and physical appliances presented challenges
based on the behaviors of Ethernet and IP. In particular, the behavior of IP address resolution
Protocol (ARP) and system ARP tables, and Ethernet Media Access Control (MAC) address
tables greatly influenced network design, which had to account for the default behavior of
Ethernet physical address resolution.

Figure 2: Filtering VLANs

For example, to meet a networking requirement (as shown in Figure 3), a transparent web proxy
appliance was placed in line between two routers connected on the same VLAN (VLAN 100).
In a physical environment, this is straightforward, but not so in a logical environment where
systems rely on VLAN trunks to support connectivity between physical and logical devices.
Initially traffic wouldn’t flow through the proxy appliance, as the ARP broadcasts from the
router were being seen by the virtual machine firewall in the hypervisor, and switches were
passing traffic directly to the MAC address of the virtual firewall and bypassing the web proxy.

Figure 3: Traffic bypassing an in line hardware appliance

Inline Layer 2 device issue

When the router sends an ARP broadcast for its Ethernet destination MAC address, the router
finds the destination MAC on the firewall VM in the hypervisor. Since the router, the proxy and
the firewall are all on the same VLAN, the traffic bypasses the proxy and is delivered directly to
the firewall.

The solution was to break the pathway into two VLANs as shown in Figure 4 (VLAN 100 and
VLAN 200) but using the same single IP subnet on both VLANs. By crossing the IP subnet

Figure 3

through two different VLANs, the ARP request received no reply within its own VLAN (VLAN
100 in the diagram). But because the broadcast also passed through the proxy to VLAN 200, the
firewall interface did reply on VLAN 200 and was registered by the switch as an available MAC
address through the VLAN 100 port connected to the proxy appliance.

Using two VLANs to control ARP traffic

VLAN 100 connects the router to the proxy’s first interface, while VLAN 200 connects the
proxy’s second interface to the firewall. When the router broadcasts an ARP request for the
firewall, the destination MAC address is not found on VLAN 100. The proxy, however, passes
the ARP request through its interfaces from VLAN 100 to VLAN 200, where the firewall is
discovered, which updates MAC address tables on all devices to reflect MAC address locations.
The ARP response returns to the edge switch and registers the firewall MAC as available
through the proxy switch ports. Data follows the same path.

Another challenge was how to place Layer 1 appliances which do not interact with MAC address
tables 1. These so-called “bump-in-the-wire” devices do not support the ARP process as

Figure 4

‘normal’ devices would. In fact, the devices being placed in the network in this instance were
Intrusion Detection System/Intrusion Protection System (IDS/IPS) appliances, which are
specifically engineered to be ‘unseen’ on the network.

When an IDS/IPS device was inserted inline between a virtual firewall and a router, the SEI
already knew that this connection would require two VLANs. However, the IDS/IPS appliance
presented a new problem because the IPS device, as a transparent Layer 1 appliance, appeared to
the network as a direct cable connection between two switchports. This connection created
multiple entries in the switch MAC address table, because the IDS/IPS device does not keep an
ARP table identifying which interface was the source port for the ARP broadcast (figure 5).

When communication began, the switch saw unicast traffic requesting a MAC address that it
identified as being sourced from two different VLANs. Both VLANs were reachable from the
source appliance, so traffic was likely to end up on either VLAN, causing intermittent
communication (as the core switch could gain and then lose the location of the destination and/or
source MAC address).

Figure 5

IDS/IPS

MAC address table confusion from Layer 1 appliances

When the router issues an ARP broadcast, the switch updates the MAC address table to associate
the router to its connected interface in VLAN 300. The broadcast then passes through the
IDS/IPS, where the switch now sees the router MAC address being re-associated to a second
switchport on the same switch (in VLAN 400). When the ARP broadcast reaches the firewall,
the ARP reply is also associated to two different ports on two different VLANs. This creates
unpredictable delivery behavior for packets attempting to travel between the router and the
firewall.

The traffic issue was resolved by only using two VLANs while also filtering the VLANs so that
only the VLAN required to reach the next hop destination was visible in the core switch. The
strategic point to filter was at the VLAN trunk uplink port from the edge switch. Since the
default behavior of a switch is to propagate a broadcast out all ports except the port from which
the broadcast frame was originally received, the switch automatically guards against Ethernet
loops. And since one VLAN was only needed for the connection on the local switch (VLAN 300
in figure 5), blocking that VLAN at the uplink port insured the core switch would learn of the
router on VLAN 400, insuring the firewall places its own ARP reply packet on VLAN 400
where it gets passed through the IDS/IPS back to the router in VLAN 300 (figure 6).

Controlling Layer 1 connections using VLAN filters

By filtering VLAN 300 at the uplink port of the edge switch, the core switch only saw ARP
replies in VLAN 400, which then registered MAC address table entries appropriately to permit
the correct traffic flow from the core switch to the edge switch, where the traffic was able to
move from VLAN 400 to VLAN 300 via the IDS/IPS.

Another networking problem involved the issue of inserting VM sensor systems between two
Layer 3 devices (wanting to place a monitoring machine between an edge firewall and an interior
router, for example). In this case, Figure 7 shows what happens when trying to expose the sensor
to the traffic path: since the source and destination physical appliances see each other in the
switched environment, the traffic is never transmitted up the VLAN trunk to the VM sensor
device. This happens whether the two appliances are on the same edge switch or whether the
appliances ore on different edge switches; the only difference is whether the traffic stays in the
edge switch or whether it crosses the core switch before reaching the destination appliance.

IDS/IPS

Figure 6

VM sensor system unable to record traffic between physical appliances

Since both physical devices are directly connected to switches, the switches can move traffic
through the infrastructure without having the data exposed to the VM sensor.

There was no easy solution to this situation when using ESX VM switches, which cannot be
bridged. The SEI ended up creating an artificial Layer 3 device on the VM switch, with the
switch placed in promiscuous mode. This permitted packet sniffing by adding an extra hop in the
data path (figure 8). It solved the data traffic path issue, but created another IH ‘hop’ and was no
invisible to end users. Additionally, the solution must be engineered with one router port on the
same VMnet such that the data you want to sniff sees the sensor before the router so that all
Layer 2 and Layer 3 traffic can be sensed.

 The SEI deemed other potential solutions, such as mechanically bridging ESX host physical
ports, not sufficiently scalable.

Figure 7

Placing another Layer 3 device (router, etc.) in the VM environment forces data past sensor, but
the solution is not invisible to the exercise/training environment.

Future development: Layer 1 switching

The infrastructure the SEI currently deploys for exercise and lab support has a fixed, wired Layer
1 infrastructure, which requires manual intervention when cable connections to or between
appliances need to be modified. So while hypervisor-based environments can be changed rather
easily from one scenario/deployment to the next, the inability to change physical connections via
configuration limits the ability to support scenario changes due to the need to change physical
cabling to change the environment. The SEI’s next iteration of this system will incorporate
Layer 1 switches between in-game network appliances and the backbone infrastructure.

Programmable Layer 1 switching will permit connectivity configurations to be stored, and
physical wiring changed, on the fly. In one configuration, a router can be connected directly to a
proxy before sending the traffic on to a firewall, while reconfiguring the Layer 1 switch would
allow the proxy to be changed or the proxy could be taken out of the network entirely when
desired for a given scenario.

Figure 8

Another feature of Layer 1 switching is that most L1 switch manufacturers incorporate a form of
data tap in their switches. This tap feature makes it much easier to instrument any connection in
the system either for use by exercise participants or for transparent monitoring of exercise events
by the event operators, which would provide a new solution for connecting VM sensors to
networks.

One consideration of Layer 1 switching is that a full Layer 1 switch implementation raises the
port count of the systems dramatically, for two reasons. First, all devices now have two extra
ports to connect (the “in” and “out” ports on the Layer 1 switch). Second, while it’s rare for
devices to use all ports of all devices in an environment, this capability is necessary for
implementing a fully configurable environment. Specifically, all possible ports of all devices
must connect to the Layer 1 switching fabric so that they are all available for configuration if
needed in some future environment. If one assumes that it’s unlikely that all appliance ports
would ever connect to the switching fabric at the same time, it is possible to ultimately
oversubscribe the infrastructure’s Layer 2 switches because a certain number of appliances will
be directly connected to each other, and a certain number of appliance ports may not be used at
all. The acceptable degree of oversubscription is a judgment call, and ultimately the
infrastructure should be engineered to easily accommodate additional Layer 2 switchports if
required.

Adding switch-level configuration to the VM environment

The SEI exercise environments has been unable to provide Layer 2 configuration manipulation
to environment participants in the VM environments. This has been a function of creating the
isolated environments, because giving participants the ability to manipulate Layer 2 connections
allows them to break the environment and also exposes the ‘artificiality’ of the STEPfwd
infrastructure. It’s especially true in virtual-only environments because manipulating Layer 2
connectivity usually means giving access to the hypervisor environment, when ideally the
participants shouldn’t even know a hypervisor environment exists.

An upcoming research project will explore the feasibility of operating shelled hypervisors: a
management hypervisor that sets the exercise infrastructure, with an additional virtualized
hypervisor running inside the physical hypervisor installation. Within the virtualized hypervisor,
the proposed solution would deploy Cisco 1000v virtual switches that would be given to the
exercise participants for command-line access, locking the participants out of the hypervisor
environment while permitting them to operate switches within their exercise operational sphere.
This could complete the creation of a virtual environment that would mirror the physical
environment while retaining all the advantages of a virtual environment for training and
exercises.

In the physical appliance arena, it’s possible to dedicate certain switches to exercise use and turn
over configuration to the exercise participants, though it increases the total required equipment
and equipment costs and potentially risks the success of the exercise if the switch becomes
totally compromised. But, should both of these Layer 2 changes be made, it should be possible to
present a total exercise network as a combination of virtual and physical devices for the
STEPfwd environment of the future.

CONCLUSION

Whether they’re for technical testing, training or training evaluation, individual and/or team
proficiency exercises, or just capture-the-flag competitions, lab environments are essential for
developing cyber and cybersecurity skills. And, given the current state of technology, these labs
will need to incorporate a combination of virtual and physical components to provide the
necessary degree of production-environment realism. If done correctly, building a cost-effective,
readily deployable lab environment doesn’t necessarily entail a compromise in realism.

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally
funded research and development center.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie
Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

DM-0000921

REFERENCES AND FURTHER READING

[1] Software Engineering Institute, “SEI Receives Contract Extension From U.S.
Government,” Carnegie Mellon University,
http://www.sei.cmu.edu/newsitems/contract2010_news.cfm
[2] National Initiative for Cybersecurity Careers and Studies, “Federal Virtual Training
Environment (FedVTE) and Federal Cyber Training Events (FedCTE),” http://nics.us-
cert.gov/training/fedvte-and-fedcte
[3] Software Engineering Institute, “STEPfwd,” Carnegie Mellon University,
https://stepfwd.cert.org/vte.lms.web
[4] Software Engineering Institute, “XNET CERT Exercise Network,” Carnegie Mellon
University, http://xnet.cert.org/content/docs/xnet-trifold-2010.pdf
[5] Montalbano, Elizabeth, “U.S. Cyber Command Practices Defense In Mock Attack,”
Information Week, November 30, 2011,

http://www.informationweek.com/government/security/us-cyber-command-practices-defense-in-
mo/232200508

BIOGRAPHY FOR PUBLICATION

JOSEPH MAYES, B.S., M.Ed., is a member of the technical staff at Carnegie Mellon
University’s Software Engineering Institute and serves with the CERT Enterprise Workforce
Development team. He has been an educator for more than 30 years in secondary, undergraduate,
and graduate schools, and also as a commercial course instructor. He has been a network
engineer and network security professional since 1990, both as a U.S. Army IT Sergeant Major
and in civilian positions with government and commercial network systems, including Critical
Infrastructure and Key Resources (CIKR) systems. He is a Microsoft Certified Trainer (MCT), a
Cisco Certified Academy Instructor (CCAI) and Cisco Certified Systems Instructor (CCSI), and
holds more than 25 certifications in Microsoft systems, routing and switching, network security,
wireless technologies, telephony and information assurance. He is a member of the IEEE,
ISC(2), and the ETA-I. Email: jmayes@sei.cmu.edu.

